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The flow of an incompressible, viscous fluid past a sphere is considered for small 
values of the Reynolds number. In  particular the drag is found to be given by 

D = D,{1+ $R i- &RZ(log R + y + 2 log 2 - g8) + gR310g R + O(R3)}, 

where D, is the Stokes drag, R is the Reynolds number and y is Euler's constant. 

1. Introduction 
This is a classical problem with an extensive literature. To obtain higher order 

approximations beyond the first term given by Stokes (1851) is complicated by 
the fact that an expansion in terms of the Reynolds number, for the flow in the 
vicinity of the sphere, is not valid at large distances from the sphere. It has 
therefore to  be matched with a separate expansion which is calculated for the 
'outer' flow. The technique was evolved by Kaplun (1957). It has since been used 
by a number of investigators and is sufficiently well known not to require a 
separate account here. For a good historical survey of the problem of slow flow 
past a sphere, and a detailed description of the application of matched asymptotic 
expansions, the reader is referred to the paper by Proudman & Pearson (1957) 
who carried out the analysis as far as the term of order R2 log R. The purpose of 
this paper is simply to continue the analysis of Proudman & Pearson a8 far as the 
term of order R310gR. 

2. Basic equations 
Let a be the radius of the sphere, and let U be the speed of the uniform stream- 

ing motion a t  infinity, assumed to be parallel to the positive x axis of a system 
of co-ordinates based on the centre of the sphere. The velocity field, UV, and 
the space co-ordinates can then be non-dimensionalized with the aid of U and a 
respectively, and the equations of motion will then be 

V2V-Vp = R(V.V)V, V.V = 0, (2.1) 
where pvUp/a is the pressure, R = Ua/v is the Reynolds number, p is the density 
and v is the kinematic viscosity. Alternatively one can express the governing 
equation in terms of a non-dimensional stream function $. This takes the form 
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where (r,  8) are polar co-ordinates, p = cos 0 and 
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a 2  1-p2 a 2  

p a i a  

0 2  = -+- - 
ar2 r2 ap2’ 

L = - -  +--. 
1-p2& r a p  

3. The inner expansion 

form (3.1) 

Given the form of the expansion, the various terms can be obtained by substitu- 
tion of the series in (2.2) and integration of the resulting set of linear equations. 
One then finds that 

In terms of the stream function, the inner expansion is found to be of the 

$ = Po + R$., + R2 log R$2L + R2$, + R3 log R$3L + R3$, + . . . . 

(3.2) 

(3.3) 

(3.4) 

3 3logr 3 1 
40 c3 r I6  5r 16r2 +-) 40r3 QAPL) 
3 9, = - - (clr2+ c2r + - - r3+ 3r2logr + - ~ -~ 

(3.5) 
l l r  1 4logr 1 +---+- 
24 3 35r 

(3.6) 

- 640 

where = J” pn(p) dp (3.8) 
-1 

and Pn(p) is the Legendre polynomial of degree n. The precise form of the func- 
tions Tn(r) in $3 is not required.? For reference purposes we note that 

&1 = (p2- 1)/2, &z = A P 2 -  1)/2, &3 = ( p 2 -  1) (5p2-  I ) P .  (3.9) 

The integration of the various equations for the $n’s involves arbitrary con- 
stants in the complementary function, which are to be determined by the inner 
boundary conditions 

@ = a $ / a r = O  on r =  1, (3.10) 

t The expression for $2 quoted by Proudman & Pearson (1957) is not correct,. 
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and by appropriate matching with the outer solution. These constants are left 
undetermined in $,, $3L and $3. The calculation of $,,, $, and $2L has, however, 
already been discussed by Proudman & Pearson (1957) and these are quoted here 
in their final form with all the constants determined. These final forms have 
also been used to obtain the above expressions for $,, $3L and $3. 

Briefly $o is the Stokes solution and is completely determined by the boundary 
conditions a t  r = 1 and the fact that it must match with a uniform stream at 
infinity. The next term in the outer solution is then obtained by matching with 1cl0. 
This in turn serves to determine $, and gives (3.3). To determine 7 i f Z L ,  Proudman 
& Pearson argue that a term such as R2r2 log rQl, which appears in $,, can arise 
in the outer solution only from the combination R2r210g (Rr) Q1 (or p210gpQ, 
when expressed in terms of the outer variable p = Rr).  Thus if a matching between 
the inner and outer solution is to be possible, 1clZL is required in order to combine 
suitably with the term -(9rzlogrQ,)/40 of $,. In the next section the actual 
expression for the outer solution is given and the matching with $,L can then be 
checked directly. 

4. The outer solution 
The expansion for the 

the form 
velocity field in the outer solution is assumed to be of 

V = i+V,+V,+ ..., (4.1) 

where i is the unit vector parallel to the x axis, and V, satisfies the Oseen equations 
(Lamb 1932) av 

V2V,-R-'-Vp1 ax = 0, V . V ,  = 0. (4.2) 

The solution has been discussed by Proudman & Pearson (1957) and will be 

The next term V ,  satisfies the equations 
quoted below. 

(4.3) 
av 
ax 

V2V, - R -'- Vp, = R(V, . V )  V , ,  V .V,  = 0. 

If V, is expressed in terms of a vector potential, such that 

V ,  = RV A A,, (4.4) 

then the equation to be satisfied by A, is 

V2 V2- R -  A, = V A (V, A (V A V l ) )  = F, (say), (4.5) ( 
and it may be verified that a particular solution is such that 

A, = A21-A22, (4.6) 

A,, = F,, R-V'A,, = F,. (4.7) ax 
a 
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Now it can easily be shown that 
F, = F,i,+, (4.10) 

where i, is a unit vector in the direction defined by an angular increase about 
the x axis. It follows that 

A, = A2i, = -i  ,+ JOm r; drl J’r sin 8, do, jo2= cos 4, a#, 
)R((r~+r~-2trr,)*+r,cos8,--rcose) 1 - e - ~  

x IF,(.,? 4) j0 -~?a]~ a (4.11) 

(4.12) where 

Finally, it  is noted that the stream function associated with A, is simply 

t = cos 8 cos 8, + sin 0 sin 8, cos 4. 

Rr sin 0A,. 

The above equations contain all the information required to calculate the 
first three terms of the outer solution. We follow Proudman & Pearson and 
express the result in terms of the stream function and outer variable p = Rr. Then 

R2$ = y = Yo(p,  p )  + RY,(p,p)  + R2Y,(p, p)  + * * *, (4.13) 
where Yo = +p2(1 -p2)  = +RZr2(1-p2), (4.14) 

Y1 = - $( 1 + p )  (1  - e-W- f i ) )  = - $Rr( 1 -p2) 

+ &R2r2( 1 -p2)  (1 -p) - &R3r3( 1 -p2)  (1  -p), + . . . , (4.15) 

Y, = C( 1 +p)  (I  - edP(1-p)) + p  sin 0.4, 

= BCRr( 1 -p2)  - &CR2r2( 1 -p2) (1 -p )  +&Rrp( 1 -p2) +&R2r2( 1 -p2)  

x {:log (Rr) + g-y + 3 log 2 - % - #p + +s(5p2 - l)} + . . . (4.16) 

and y is Euler’s constant. 
The first term, Yo, is the stream function for a uniform stream and it is noted 

that it matches, as it should, with the leading term, for large r ,  of +h0. The second 
term in the outer solution, Y,, is the stream function for a solution of the Oseen 
equations (4.2). In the strict application of the matching procedure, the constant 
of proportionality ( - +) is chosen so that the leading term in the expansion of Y, 
for small p matches with the second term of y%o, namely 3r&,(p)/2. The next 
term Y2 is a combination of the special solution obtained from A ,  and a com- 
plementary function. It turns out that the term displayed in (4.16) is a sufficient 
contribution from the complementary function, with a suitable value for C 
obtained from matching. For this purpose the expansion of A ,  for small p is 
required. Only the final result is quoted above. Some of the steps in the calcula- 
tion are given in § 5 .  The final result has been checked independently by the two 
authors. 
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In the expansions of Yo, Y,, Y2 in (4.14) (4.15), (4.16) all the terms which 
make a contribution to $ of order R2 or larger are displayed. All these must be 
matched with corresponding terms in the inner solution. We note first that the 
expression for $2L, quoted from Proudman & Pearson, does in fact check with the 
term of order R210gR which arises in the outer solution through Y,. Next the 
constant C of Y, is chosen so that the contribution CRr(1 -p2)/2 to $ from Y2 
matches with the term 9RrQl(p)/16 of R$, in the inner solution, This gives 

C = --9-. 1 6  (4.17) 

With this value of C, the rest of the terms in the outer solution can be matched 
with a suitable choice of the constants c1 and cp of $2 (equation (3.5)). Comparison 
of the appropriate terms in the inner and outer expansions shows that 

(4.18) 

- 27c4/64 = -A. (4.19) 

The remaining constants in $,, namely c,, c3, c5, cs, c7, c8, then follow from the 
boundary conditions @ = a$/ar = 0 on r = 1. The final results are 

3~1/80 = + 3 log 2 - gg + z] ,  

c1 = 37+510g2-g, c2 = -${3y+5log2-~} ,  c3 = &{3~+510g2-%}, 
(4.20) 

C6 = -2- (4.21) 4 - 2 7 ,  c5 = %T, 18 ,  

c7=+&$, c 8 -- - 1 0 0 8 0 '  3 6 3  (4.22) 

This completes the inner solution as far as $2. To proceed further we first con- 
sider those terms of the inner expansion which involve log R when expressed as 
a function of the outer variable, The significant terms are, from (3.4)-(3.7), 

[-&R210gR(2r2- 3r) -&R2r210gr+2dR310g Rr2-&R3r210gr]Q,(p) 

c ---a 2 9  

+&R310g Rr2Q2(p), (4.23) 

= - &,p2 lOgpQ,(~) + R log R ( s p  + 2dp2 + &&p2) Q1(p) 

+%RlogRp2Q2(pu) +W), (4.24) 

when expressed as a function of the outer variable. The first term is already 
matched with a corresponding term in Y,. The matching can be continued if the 
next term in the outer expansion is of the form R310gRY3,, where Y,, is 
derived from the Oseen equations. It is in fact sufficient to choose the expression 

UPQL = N (  1 + p )  { 1 - e-h'(l--P)} 

= +Np( 1 -p2) - *Np2( 1 -p2) (1 -p )  + . . . 
= - (Np  - $Np2) - $Np2Q2(p) + . . . . (4.25) 

The matching is then assured by the choice 

N = - 2 7  8 0 ,  d = - - 2 .  1 6 0 ,  (4.26) 

which determines $3L and completes the analysis for both the inner and outer 
expansions. 

48-2 
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5.  The evaluation of Y, 
In equation (4.16) an expression for Y2 to order R2 was quoted. For complete- 

That part of Y, which is derived directly from A ,  is, from (4.11), 
ness, some of the steps in the evaluation of this expression are now given. 

where 

and 

t = cos 8 cos 8, + sin 8 sin 8, cos 

J"(r, 8)  i, = V A {V, A (V A V,)}, 

Rr 
R 1 

r4 
P,(r, 8) = -$sin 8 (1 - cos 8) + - ( 3  - COS 8)  + p5 

To evaluate (5.1) the range of integration for r1 is split into the two intervals 
0 6 rl 6 k and k < rl < 00, where k is a constant such that 76 B 1, Rk < 1. The 
expression may then be written, with sufficient accuracy, in the form 

x [FI(rl, 8,) (1 - e-+RrI(l+coso 1". (5 .5 )  

To calculate the first term the approximate expression for F,, given in (5.4), is 
used. The result is 

~~Rrsin28cos8-~~R21.2sin28{~log ( k / r ) + ~ Q + ~ c o s 8 - ~ 2 , 9 - ~ 0 ~ 2 e } +  O(R3). 
(5.6) 

Evaluation of the second term gives 

+cR2r2sin28{tlog (kR) +$y+ 3log2-+7}+O(R3) 

and the combined contribution t o  Y, is therefore 

&Rr sin2 8 cos 8 + &R2r2 sin2 0 

x {t log (Rr) + $7 + 3 log 2 - s6iV - f cos 8 + ?$ ~ 0 ~ 2 8 )  + O(R3). (5.7) 
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6. The drag on the sphere 
The result of primary interest is the drag on the sphere. This is evaluated as 

Let uw and a,., be the non-dimensional tangential and normal stress com- 
follows. 

ponents on the surface of the sphere, then the drag is given by 

(urr cos 8 - Ure sin 0) r2 sin 8 d8 

where the integral is to be evaluated at r = 1. This can be simplified, with the 
help of the boundary conditions to be satisfied at the surface of the sphere, to 

The pressure can be determined, to within a constant which will not contribute 
to the dra.g, from the tangential component of the equation of motion 

On the surface of the sphere this gives 

or 

Now the inner expansion for q9 can be written in the form 

W 

@ = 11 Qn(P)- 
n= 1 

It follows, from (6.5) and (6.2), that 

With the help of (6.8) and the inner expansion, the drag is easily calculated. 
The result is 

D = Ds(l + $R +&R2(logR + y+$log 2 - gs} + ER3 10gR + O(R3)},  (6.9) 
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where D, is the drag according to the Stokes solution, namely 
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D, = 67TpvaU. (6.10) 

Figure 1 gives the theoretical results for 0 < R 6 1, together with the experi- 
mental measurements of Maxworthy (1965). The various curves show the effect 

0.2 0.4 0.6 0.8 
R 

FIGURE 1.  Experiment : I, Maxworthy (1965). Theory : 

D - D ,  3R D-D, 3R 9 - - +- RalogR; 
3 40 (2 )  __ - - - (1)  ~ - - 

D, 8 ’ DS 

D - D s  3R 9 
= -+- Ra [logR+y++log2-%%]; ( 3 )  ___- 8 40 D, 

of successive addition of a further term in the expansion. The conclusion seems 
to be that the expansion is of practical value only in the limited range 

0 < R < 0.5 

and that in this range there is little point in continuing the expansion further. 

One of us (D. R. B.) would like to thank the Canadian Mathematical Congress 
for a summer research grant which was of great assistance during the investigation 
of this problem. 
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Appendix. Modified computation of the drag coefficient of a sphere 

By IAN PROUDMAN, University of Essex 

The calculation by Professors Chester and Breach of the term of order R in the 
expansion of the drag coefficient D for a sphere at small values of R represents the 
first useful extension of the work of Oseen, since the earlier calculation of the 
term of order R log R by Proudman & Pearson (1957) was virtually useless with- 
out the accompanying. term of order R. It is therefore particularly disappointing 
that the numerical ‘convergence’ of the expansion is so poor, and such as to 
limit its utility to the range R < +. The poor convergence is also rather surprising. 
One would not have expected any dynamical phenomena to develop in, say, the 
the range 1 < R < 10, which were not approximately represented by the first 
few corrections to Stokes’s solution for the flow; a view supported by observation 
a t  least at the lower end of the range, where measured values of the drag co- 
efficient are in excess of Stokes’s values by only 25 yo or so. 

It seems likely, therefore, that the poor convergence of the expansion (6.9) 
may, in part at  least, be due to the unsuitability of the function D for expansion 
in terms of R. The general nature of this function is known from observation 
over the whole range of Reynolds numbers for which the flow is laminar, and is 
such that d(1og D)/d(log R)  increases monotonically from its value - 1 at R = 0. 
Because of the onset of turbulence, the asymptotic value of this parameter, 
as R + 00, for steady flow is not known from observation; but it is presumably 
not positive, and, from arguments based on boundary-layer theory, not less 
than -4 .  

This behaviour suggests that a more appropriate form of presentation of 
results for D might be 

R = E ( D / D , ) ~ ,  (1) 

Ds/D = f m ( e ) ,  (2) 

where m is a constant, and E is a new expansion parameter defined by (1) .  Prom 
equation (6.9)) the expansion of fm(e) for small values of e is 

f,(e) N 1 - $c - &e2(log e + y + $log 2 - $$$ + gm) - g p l o g  e + O ( 8 ) .  (3) 

If a large number of terms of (3) were available, it would be appropriate to 
attempt a prediction of D for all Reynolds numbers by basing the choice of m 
on the asymptotic behaviour of D as R --f co. Thus, if D cc R-(m-l)lm as R --f co, 
then e + constant = E ,  as R -+ co, where em is given by the first zero offm(€). Thus, 
the expansion (3) would be relevant only in the finite range (0, em), and, although 
one could not expect to determine the analytic behaviour of fm(e )  in the neigh- 
bourhood of em (corresponding to the asymptotic expansion of D for large R), 
one might reasonably expect to obtain an estimate of the location of this zero 
(thus determining the coefficient of R-(m-l)’m). In  this context, the cases m = 1 
and m = 2 are of special interest, since they correspond to the asymptotic be- 
haviours I) + constant and D cc R-4, respectively. 
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Unfortunately, the small number of known terms of (3) makes such an attempt 
over ambitious. I n  this case, the best results at small and moderate Reynolds 
numbers are to be expected from a choice of m which corresponds to an asymptotic 
(for large R) behaviour somewhat closer to Stokes’s law. This corresponds to 
m > 2. 

0 1 2 3 4 5 6 
R 

FIGURE 2. Modified computation of the drag coefficient. - , based on all known terms 
of (3); -----, based on first two terms of (3); 0, Chester & Breach; 0, points at which 
8 = 6; I, measurements by Maxworthy (1965). 

The functionf,(e) was computed from (3) for several values of m, and the 
corresponding results for the drag coefficient are shown in the accompanying 
figure. Some idea of the convergence of the expansion is given by the points (0 )  
at which B = i, and by the broken curve, which, form = 4, represents the effect 
of taking only the linear (Oseen) terms in (3).  Agreement with the observations 
of Maxworthy (1965) is clearly best for a value of m close to 4, and is then fairly 
good. 
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